Русское Агентство Новостей
Информационное агентство Русского Общественного Движения «Возрождение. Золотой Век»
RSS

Российские учёные создали магнитные микропровода для умных материалов

15 октября 2024
663
Исследователи из НИТУ МИСИС разработали систему, которая позволяет дистанционно отслеживать деформации в различных объектах. Такая система может найти применение в создании бесконтактных датчиков и новых умных материалов. Учёные создали проводки из аморфных ферромагнитных сплавов, чей диаметр меньше человеческого волоса. Магнитные свойства материала меняются под воздействием температур и механического давления.
Российские учёные создали магнитные микропровода для умных материалов

Российские учёные из НИТУ МИСИС разработали ультратонкие аморфные микропровода для бесконтактных датчиков и умных материалов. Это упростит и удешевит производство таких устройств, сообщили RT в пресс-службе университета. Результаты исследования опубликованы в журнале Physics of Metals and Metallography.

Материалом для микропроводов стали аморфные ферромагнитные сплавы. Они обладают рядом важных свойств: биосовместимы, прочны, устойчивы к коррозии, а также имеют высокую магнитную чувствительность. Ферромагнетики – это вещества, имеющие очень высокую восприимчивость к внешнему магнитному полю. Причём собственная намагниченность таких материалов под влиянием магнитного внешнего поля не пропорциональна силе воздействия, а меняется по сложному нелинейному алгоритму. Также ферромагнетики благодаря свой высокой магнитной активности способны генерировать дополнительные частоты в сигнале электрического напряжения под внешним воздействием.

Характер генерации меняется в зависимости от конфигурации провода, это позволяет использовать подобные материалы в качестве бесконтактных датчиков механической деформации, объяснили авторы исследования.

Российские учёные создали магнитные микропровода для умных материалов

«Когда ферромагнитные микропровода находятся в аморфном состоянии, их магнитные свойства сильно зависят от механических нагрузок-растяжений и нагрузок-сжатий. Например, если провод растянуть, то энергия, определяющая направление намагничивания, уменьшается. В результате намагниченность жилы медленнее реагирует на внешние магнитные поля и сигнал электрического напряжения становится шире, теряя высокие частоты», – пояснил RT доцент кафедры технологии материалов электроники НИТУ МИСИС Николай Юданов.

Авторы работы создали микропровода на основе железа, кобальта, кремния, бора и хрома, которые изменяют магнитные свойства при механическом воздействии. Провода покрыты стеклянной оболочкой, которая дополнительно помогает формировать уникальную магнитную структуру всего проводка.

Диаметр получившейся конструкции – всего 30 микрометров, что тоньше человеческого волоса (толщина волоса – 40 мкм. RT).

Дополнительно учёные разработали магнитную систему для бесконтактного сбора данных с провода. Она представляет собой систему из плоских магнитных катушек. С её помощью можно дистанционно перемагничивать провод и считывать возникший в нём сигнал электрического напряжения. Разработанные учёными микропровода тоньше и дешевле аналогов. Вместе с системой считывания данных такие провода могут применяться при создании умных материалов, деформацию и повреждение которых можно отслеживать дистанционно.

В перспективе технология может найти применение в медицине как элемент умных имплантатов, состояние которых врач сможет отслеживать без необходимости их извлечения из организма пациента. Авторы работы отметили, что перед внедрением таких имплантатов в медицинскую практику ещё предстоит детально исследовать, как они будут вести себя в МРТ-аппарате. Однако теоретические расчёты показывают, что такое применение возможно благодаря очень малому диаметру проводков.

«Мы показали потенциал аморфных микропроводов в качестве бесконтактных датчиков для обнаружения механических напряжений, что способствует развитию технологий дистанционного мониторинга, например механических напряжений и температуры. Полученные результаты могут послужить основой для разрабатываемых умных материалов или смарт-имплантатов», – сообщила RT профессор кафедры технологии материалов электроники МИСИС Лариса Панина.

Поделиться: